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Equivalence of massless boson and fermion theories in 
curved two-dimensional space-time: Sugawara stress tensor 

P C W Davies 
Department of Mathematics, King's College, Strand, London WCZR 2LS, UK 

Received 5 September 1977 

Abstract. Jt is shown that the well known equivalence of two-dimensional massless scalar 
and spinor quantum field theories extends to curved space-time. The vacuum Sugawara 
stress tensor for a spinor field is evaluated by a covariant point-separation procedure and 
found to be identical to the scalar vacuum stress, previously evaluated by Davies and 
Unruh to be equivalent to the conventional fermion stress tensor (in the absence of 
compact spatial sections). 

1. Equivalence of fermion and boson theories 

It has been noticed (see for example-Freundlich 1972) that in two-dimensional infinite 
Minkowski space there is a close formal correspondence between the quantum field 
theories of free massless fermions and bosons. It has long been known (Jordan 1935) 
that it is possible to construct massless bosons from bilinear combinations of massless 
fermion fields, while the reverse construction has also been carried out (Skyrme 
1961). Moreover, Coleman er al (1969) have shown that the theory of free massless 
fermions in two dimensions is a Sugawara theory. In such a theory one deals directly 
with commutators of the current operator j , (x ) ,  defined by a point-splitting pro- 
cedure. 

(spinor indices will be suppressed). The stress tensor is defined in terms of the current 
j, as follows? 

TMU(x) = lim di, ( x  )ju ( x  1 +] .Ax )i, (XI - g,, ( x  )i"(x)io(x 1). (1.2) 
€+O 

It is clear that the Sugawara stress tensor T,, is structurally very different from the 
conventional fermion stress tensor T,, (given by (2.8) below). However, FUu closely 
resembles the scalar stress tensor 

i ( 4 w 4 , u  + 4,&,, - g,Y&'4.") (1.3) 
through the replacement j,, =d,p.  In fact it has been shown (Freundlich and LuriC 

f Definition (1.2) differs by a factor of 2 from that used conventionally. This is because we use four- rather 
than two-component spinors. 
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1970, Freundlich 1970) that this Sugawara model is equivalent to a canonical Gold- 
stone boson theory with the stress tensor derived from a Lagrangian containing only 
the field 4, 

It is is interesting to investigate to what extent this equivalence remains true in 
curved two-dimensional space. In this case the fields are no longer free, but are 
coupled to an external metric ('gravitational') field. As a first step, we here investigate 
the vacuum expectation value of Fwv in curved space and prove that it is indeed 
identical to the scalar field case, so long as the Casimir energy is absent (no discrete 
modes). 

2. Themodel 

A general two-dimensional space-time may be described by the metric 

ds2 = C(u, v )  du dv (2.1) 

where U and v are standard retarded and advanced null coordinates respectively: 
u = t - z ,  v = t + z .  

The neutrino field F(u, v )  obeys the equations 

where V, = 8, +I-, is the covariant derivative, Tw being the affine spinor connection 
(spinor indices will be suppressed throughout). We use the following representation 
of the Dirac matrices (see Unruh 1974): 

1 
'Ya = 2  

'1 0 -1 0 1 0  1 

O 1 0 - 1  O 0 11' 'Y*=~: -1 O 0 -1 O -;I (2.5) 

.o -1 0 -1 0 1  0 - 1  

r' 0 0 01 

'Y0=:(y"+'Y~)=c-l/2~ O 0 0 - 1  O O 0 1 
LO o o -11 

0 0 - i  0 

0 - i  
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The stress tensor operator is 

Tu, = Tu, = 0 

where is the Dirac adjoint of 9, HC denotes Hermitian conjugate and [ , ] is the 
commutator. 

Both (2.2) and (2.8) are invariant under conformal transformations g,, + Cg,,, 
provided that we also transform 9 to C-1'49 and .5i to C-'I4.5i. Therefore, we may 
exploit the conformally flat nature of the two-dimensional metric (2.1) to solve 
equations (2.2) and (2.3) immediately in terms of standard normalised exponential 
mode functions 

(2.10) 

with o = [& I>  0 and -CO < k € CO. These two positive-frequency solutions represent 
neutrinos with both helicities. Two more linearly independent solutions denoted by *-, describe the antineutrinos (o 0), but we shall not bother to consider these 
explicitly. By symmetry, the antineutrinos merely contribute an overall factor of 2 to 
the stress tensor. 

As usual, the field operator 9 may be expanded in terms of a complete set of mode 
functions of the form 4,: 

(2.11) 

The operators c,, d ,  are annihilation operators for neutrinos and antineutrinos 
respectively. The positive-frequency (neutrino) term in (2.11) may be written, with 
the help of (2.9) and (2.10) as 

- 0 0  

(2.12) 

where 
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The superscripts 1 and 2 represent the two helicity states, u p )  and U:? being solutions 
of (1 r iy5) U, = 0 respectively. The U term is identical to the first term with e-iwu 
replaced by e-iwu, and the spinors uL1'and uL2' replaced by 

respectively. The first term of (2.12) represents neutrinos moving to the right, the 
second term neutrinos moving to the left. In the latter case the helicities are the 
reverse of the former. Only the first term contributes to Tu,,. By spatial symmetry, Tu, 
will be an identical expression, with U replaced by U. We need therefore only calculate 
Tu, explicitly. 

The annihilation operators c, and d, define a vacuum state 10) through the 
requirement 

(2.13) c,10) = &IO) = 0. 

3. Construction of the Sugawara stress tensor 

The generalisation of (1.1) to include the effect of external fields has long been known. 
In the electromagnetic case, it is necessary to introduce factors 

exp( ie A&') dx") (3.1) 

into the definition of the current operator to preserve gauge invariance. In the 
'gravitational' case, general covariance can be preserved by the analogous expression 

where r, is the spin affine connection which obeys the equations 

The factor (3.2) has the effect of parallel transporting spinors from the point x ( + E )  to 
x ,  where x ( + E )  is displaced a proper distance E from x along a geodesic passing 
through x with (normalised) tangent vector at x of tu(€) ,  which may be seen by noting 
that (3.2) is a solution of the spinor parallel transport equation 

S(0) = 1 
(3.4) 

where 1 is the unit matrix and f(E)=dx"/dE. 
Equation (3.4) may easily be solved as a power series in E to yield 

S(E)  = a'k'a?'b -k Cl' -l3/b?'a (3.5) 
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where 

In what follows we shall denote quantities dependent on x evaluated at x ( * E )  with a 
* subscript or superscript respectively. The curved space generalisation of (1.1) may 
be taken to be 

Substituting (3.6) into the expression for Fwu in (1.2) leads to three terms involving 
products of four spinors, of the general form 

s+*+s-*-s+*+s-*-. (3.7) 
Wick’s theorem may be used to evaluate the vacuum expectation value of expres- 

sion (3.7). The result is 

- G(x. -x-,)G(xf -x-.) (3.8) 
where G(x, x ’ )  is the bispinor defined by 

(3.9) 
The (* ) superscripts denote positive- and negative-frequency parts of 9 respectively 
and { , } denotes the anticommutator. 

It follows from (1.2) and (3.8) that 

( O l ~ w u ( x ) l O ) =  -T lim Tr(yw(x)G(xf -x-,)yY(x)G(x. - x - ~ )  
f + O  

+ yU ( x  )G (xf - x-. 

- gwv ( x  >g up ( x  1% ( x  )G (xf - x- f  1% ( x  )G (x, - x -f 1). 
( x  )G (xe - X-• ) 

(3.10) 

Thus the Sugawara vacuum stress tensor is constructed from essentially the square of 
the bispinor G. 

It is now necessary to evaluate G explicitly. To this end we use the mode functions 
(2.12) in the definition (3.9). This gives 

m 2  
G(xf -x-.)=i(4~)-’(C+C-)-’’~ 5 dk 1 S-ui’S+k?’exp[ik(z -z’)-ilkl(t-t’)] 

-m r = l  

(3.11) 
when the anticommutation relations {ci) ,  c$’? = S-& are used. 

It is easy to prove the following relation: 

(3.12) 

Moreover, we note from the normalisation condition Ct”t” = 1 that (U+U-)-’ = 
V+.V-C+C-C-2. Then, carrying out the integral in (3.11), yields 

(U+ ( v+ V_)+ lI2 
G(x. -x-.) = - ( ~ X ) - ’ C - ~ ’ ~ ( X ) (  Au Ya + AV ~ b ) ,  (3.13) 

where Au = U ’ -  U, Av = U ’ -  v and U ’  = U(€), U U(-€), etc. 
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This expression may now be used in (3.10) to give terms of the general type 

The two cross terms containing (hu hu)-' vanish identically because y,yayy3/b = 
'Ywybybyw'Ya = 0 for ,U, v = U, 0. 

For the U -U component of (OIF,wlO>, the second term under the trace sign in 
(3.14) vanishes because it contains the factor 'yuybyu'yb oc yb4 = 0. Similarly, for the 
U - v component, the first term vanishes. The remaining traces are easily evaluated: 

Tr('Y,YaYuya)= c Tr(ybyaybya)= c Tr(ybya)= 2 c  

and 

Tdyvybyuyb) = 2c.  

Expression (3.14) then reduces to 

v+ v- 
8 T ( A ~ ) ~  

-- U+ u- 
8 T ( A  U )2' 

- 

for the u - u and U - U components respectively. 
So, combining all three of the terms of the form (3.15) finally yields 

1 
477 ( O l F U u ( x ;  E ,  t")lO>= - -U+U-(AU)-~ 

(3.15) 

(OlF"&; E ,  t q o )  = -- V+ V- (AU)-~  (3.16) 
4 T  

(0lFuu(x; E ,  t")lO> = (0lTuu(x; E ,  t")lO) = 0. 

Equations (3.16) are exactly the same as were obtained for the massless scalar field 
(compare for example equation (2.27) of Davies and Fulling 1977). Thus we have 
shown that, in two dimensions, even for a general metric (i.e. even in the presence of 
an external 'gravitational' field) the massless spinor quantum field may be used to 
construct a massless boson quantum theory using the Sugawara stress tensor, with the 
natural generalisation of the current operator j, to curved space-time (expression 
(3.6)), at least as far as the vacuum expectation values are concerned. The extension 
of this result to the operators themselves depends on some subtleties concerning 
point-splitting. We hope to deal with this whole problem more fully elsewhere. 

Because the regularised scalar vacuum stress tensor is identical to that for neu- 
trinos in two dimensions (Davies and Unruh 1977), it follows that the Sugawara tensor 
agrees with the conventional neutrino stress tensor (2.8) for this quantity. This is a 
rather surprising result in view of their totally different structure. This result is no 
longer true if there is a Casimir term (discrete modes), because this enters into the two 
expressions with opposite signs. 
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